RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2014 Volume 19, Issue 2, Pages 21–23 (Mi fpm1575)

This article is cited in 3 papers

A remark on commutative arithmetic rings

E. S. Golod

Lomonosov Moscow State University, Moscow, Russia

Abstract: It is proved that a commutative ring with identity $R$ is arithmetic (i.e., the ideal lattice of $R$ is distributive) if and only if for any finitely generated (or any finitely presented) $R$-module $M$ and any ideal $I$ of $R$ the equality $I+\operatorname{Ann}M=\operatorname{Ann}(M/IM)$ holds.

UDC: 512.55


 English version:
Journal of Mathematical Sciences (New York), 2016, 213:2, 143–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025