RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2014 Volume 19, Issue 2, Pages 25–42 (Mi fpm1576)

This article is cited in 2 papers

Prime radical of loops and $\Omega$-loops. I

A. V. Gribov, A. V. Mikhalev

Lomonosov Moscow State University, Moscow, Russia

Abstract: In this paper, main properties of a commutator of two normal subloops of a loop are considered. The notion of a prime radical of loops is introduced and its characterization as a set of strongly Engel elements is given. Also an $\Omega$-prime radical of $\Omega$-loops is defined and its elementwise characterization is given.

UDC: 512.548.77+512.552.12


 English version:
Journal of Mathematical Sciences (New York), 2016, 213:2, 145–157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025