RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2014 Volume 19, Issue 2, Pages 125–149 (Mi fpm1580)

On algorithmic methods of analysis of two-colorings of hypergraphs

A. V. Lebedeva

Lomonosov Moscow State University, Moscow, Russia

Abstract: This paper deals with an extremal problem concerning hypergraph colorings. Let $k$ be an integer. The problem is to find the value $m_k(n)$ equal to the minimum number of edges in an $n$-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains at least $k$ vertices of each color. In this paper, we obtain upper bounds of $m_k(n)$ for small $k$ and $n$, the exact value of $m_4(8)$, and a lower bound for $m_3(7)$.

UDC: 519.179.1+519.174.7


 English version:
Journal of Mathematical Sciences (New York), 2016, 213:2, 211–229

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025