RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2014 Volume 19, Issue 2, Pages 207–211 (Mi fpm1584)

This article is cited in 1 paper

Arithmetical rings and quasi-projective ideals

A. A. Tuganbaev

National Research University "MPEI", Moscow, Russia

Abstract: It is proved that a commutative ring $A$ is arithmetical if and only if every finitely generated ideal $M$ of the ring $A$ is a quasi-projective $A$-module and every endomorphism of this module can be extended to an endomorphism of the module $A_A$. These results are proved with the use of some general results on invariant arithmetical rings.

UDC: 512.55


 English version:
Journal of Mathematical Sciences (New York), 2016, 213:2, 268–271

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025