RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2016 Volume 21, Issue 2, Pages 145–156 (Mi fpm1722)

Rolling simplexes and their commensurability. IV. (A farewell to arms!)

O. V. Gerasimova, Yu. P. Razmyslov

Lomonosov Moscow State University

Abstract: The text by pure algebraic reasons outlines why the spectrum of maximal ideals $\mathrm{Spec}_\mathbb{C} A$ of a countable-dimensional differential $\mathbb{C}$-algebra $A$ of transcendence degree $1$ without zero divisors is locally analytic, which means that for any $\mathbb{C}$-homomorphism $\psi_M \colon A \to \mathbb{C}$ ($M \in \mathrm{Spec}_{\mathbb C} A$) and any $a \in A$ the Taylor series $\tilde{\psi}_M (a) ={}$ $\sum\limits_{m=0}^{\infty} \psi_M(a^{(m)}) \frac{z^m}{m!}$ has nonzero radius of convergence depending on the element $a \in A$.

UDC: 512.543.7+512.544.33+512.815.8+517.984.5+514.84


 English version:
Journal of Mathematical Sciences (New York), 2019, 237:2, 254–262


© Steklov Math. Inst. of RAS, 2024