Abstract:
We prove theorems on separation by sphere or (in a general case) by the boundary of a shifted quasiball of two closed disjoint subsets of a Banach space one of which is prox-regular or weakly convex and the other is a summand of a ball or quasiball. These separation theorems are applied for proving some theorems on the continuity of the intersection of two multifunctions, the values of one of them being prox-regular or weakly convex (nonconvex, in general), and the values of the other being convex and summands of a ball or quasiball. As a corollary, a theorem on the continuity of a multifunction with values bounded by the graphs of two functions is obtained.