RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2018 Volume 22, Issue 1, Pages 111–126 (Mi fpm1783)

Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm

S. S. Volosivets, A. A. Tyuleneva

Saratov State University, Saratov, Russia

Abstract: We consider functions $F=F(\lambda,f)$ with transformed Fourier series $\sum\limits^\infty_{n=1}\lambda_nA_n(x)$, where $\smash[t]{\sum\limits^\infty_{n=1}A_n(x)}$ is the Fourier series of a function $f$. Let $C_p$ be the space of $2\pi$-periodic $p$-absolutely continuous functions with $p$-variational norm. The estimates of best approximations of $F$ in $L^p$ in terms of best approximations of $f$ in $C_p$ are given. Also the dual problem for $F$ in $C_p$ and $f$ in $L^p$ is treated. In the important case of fractional derivative, the sharpness of estimates is established.

UDC: 517.518.832


 English version:
Journal of Mathematical Sciences (New York), 2020, 250:3, 463–474


© Steklov Math. Inst. of RAS, 2025