RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2020 Volume 23, Issue 2, Pages 217–229 (Mi fpm1891)

This article is cited in 1 paper

An example of length computation for a group algebra of a noncyclic Abelian group in the modular case

O. V. Markovaabc

a Lomonosov Moscow State University, Moscow, 119991, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991, Russia
c Moscow Institute of Physics and Technology (State University), Moscow Region, Dolgoprudny, 141701, Russia

Abstract: We demonstrate that the technique for calculating the length of two-block matrix algebras, developed by the author earlier, can be used to calculate the lengths of group algebras of Abelian groups. We find the length of the group algebra of a noncyclic Abelian group of order $2p^2 $, where $p> 2$ is a prime number, over a field of characteristic $p$, namely, we prove that the length of this algebra is equal to $3p-2$.

UDC: 512.552


 English version:
Journal of Mathematical Sciences (New York), 2022, 262:5, 740–748


© Steklov Math. Inst. of RAS, 2025