RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2021 Volume 23, Issue 4, Pages 17–38 (Mi fpm1907)

Universal equivalence of symplectic groups

E. I. Bunina, A. M. Lazarev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: In this paper, we prove a criterion of universal equivalence of symplectic linear groups over fields: two symplectic linear groups $\mathrm{Sp}_{2n}(K)$ and $\mathrm{Sp}_{2m}(M)$, where $n,m\geq 1$ and $K$ and $M$ are infinite fields of characteristic not equal to $2$, are universally equivalent if and only if $n=m$ and the fields $K$ and $M$ are universally equivalent.

UDC: 510.67+512.54.0+512.643


 English version:
Journal of Mathematical Sciences (New York), 2023, 269:4, 453–468


© Steklov Math. Inst. of RAS, 2025