RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2021 Volume 23, Issue 4, Pages 55–71 (Mi fpm1909)

This article is cited in 1 paper

On the torsion in the general linear group and the diagonalization algorithm

A. V. Grishin, L. M. Tsybulya

Moscow Pedagogical State University, 1/1 Malaya Pirogovskaya str., Moscow, 119991, Russia

Abstract: This work describes periodic matrices in the general linear group over the real numbers field and over the maximal Abelian extension $\mathbb{Q}_{\mathrm{ab}}$ of the rational numbers field. It is shown that for the case of real numbers the general question is reduced to the $2\times2$ matrices. A simple periodicity criterion is provided for them. We demonstrate a geometric interpretation of the results. The main result is an algorithm that tests periodicity of a matrix and, if the matrix is periodic, finds its Jordan form.

UDC: 512.643


 English version:
Journal of Mathematical Sciences (New York), 2023, 269:4, 479–491


© Steklov Math. Inst. of RAS, 2025