RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2021 Volume 23, Issue 4, Pages 177–207 (Mi fpm1916)

This article is cited in 1 paper

Four-dimensional real division algebras with few derivations

O. Fayza, E. Napedeninab, A. Rochdia, M. Tvalavadzec

a Département de Mathématiques et Informatique, Faculté des Sciences Ben M’Sik, Université Hassan II, 7955 Casablanca, Morocco
b D. Mendeleev University of Chemical Technology of Russia
c Department of Mathematical and Computational Sciences, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, On L5L 1C6, Canada

Abstract: In order to advance in the determination of all four-dimensional real division algebras $\mathcal{A}$, we introduce a new duplication process preserving the unit. This duplication process accompanied by an isotopy allow us to obtain all of these algebras in case $\operatorname{Der}(\mathcal{A})\neq\{0\}$ and partially in case $\operatorname{Der}(\mathcal{A})=\{0\}$. In the last case, we provide an $8$-parameter family of ugly $\mathbb C$-associative algebras and an $8$-parameter family of $\mathbb C$-associative algebras whose group of automorphisms contains only the identity and some reflections. For non-ugly algebras $\mathbb H_{f, f}$, the group $\operatorname{Aut}(\mathbb H_{f, f})$ contains a reflection. Also algebras $\mathcal A$ with $\operatorname{Aut}(\mathcal A)=\mathbb Z_2$ or $\mathbb Z_2\times\mathbb Z_2$ are studied.

UDC: 512.554.1


 English version:
Journal of Mathematical Sciences (New York), 2023, 269:4, 568–590


© Steklov Math. Inst. of RAS, 2024