RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2022 Volume 24, Issue 1, Pages 5–30 (Mi fpm1920)

Normal tropical $(0,-1)$-matrices and their orthogonal sets

B. Bakhadlya, A. Gutermanab, M. J. de la Puentec

a Lomonosov Moscow State University, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
c María Jesús de la Puente Departamento de Algebra, Geometría y Topología, Facultad de Matemáticas, Plaza de Ciencias, 3, Universidad Complutense UCM, 28040 Madrid, Spain

Abstract: Square matrices $A$ and $B$ are orthogonal if $A\odot B=Z=B\odot A$, where $Z$ is the matrix with all entries equal to $0$, and $\odot$ is the tropical matrix multiplication. We study orthogonality for normal matrices over the set $\{0,-1\}$, endowed with tropical addition and multiplication. To do this, we investigate the orthogonal set of a matrix $A$, i.e., the set of all matrices orthogonal to $A$. In particular, we study the family of minimal elements inside the orthogonal set, called a basis. Orthogonal sets and bases are computed for various matrices and matrix sets. Matrices whose bases are singletons are characterized. Orthogonality and minimal orthogonality are described in the language of graphs. The geometric interpretation of the results obtained is discussed.

UDC: 512.643


 English version:
Journal of Mathematical Sciences (New York), 2023, 269:5, 614–631


© Steklov Math. Inst. of RAS, 2024