RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2022 Volume 24, Issue 1, Pages 165–176 (Mi fpm1924)

Some properties of coefficients of the Kolchin dimension polynomial

M. V. Kondratieva

Moscow State University, Department of Mechanics and Mathematics, Leninskie Gory, Moscow 119992, Russia

Abstract: This paper presents a formula expressing Macaulay constants of a numerical polynomial through its minimizing coefficients. From this, we obtain that Macaulay constants of Kolchin dimension polynomials do not decrease. For the minimal differential dimension polynomial $\omega_{\mathcal G/\mathcal F}$ (this concept was introduced by W. Sitt) we will prove a criterion for Macaulay constants to be equal. In this case, as our example shows, there are no bounds from above to the Macaulay constants of the polynomial $\omega_{\xi/\mathcal F}$ for $\mathcal G=\mathcal F\langle\xi\rangle$.

UDC: 512.628.2


 English version:
Journal of Mathematical Sciences (New York), 2023, 269:5, 725–733


© Steklov Math. Inst. of RAS, 2025