RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2022 Volume 24, Issue 2, Pages 23–35 (Mi fpm1928)

Real division algebras with a nontrivial reflection

D. Gokala, E. Napedeninab, M. Tvalavadzea

a Department of Mathematical and Computational Sciences, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, On L5L 1C6 Canada
b Plekhanov Russian University of Economics, Stremyannyy Pereulok, 36, Moscow, 115093 Russia

Abstract: In this note, we consider four-dimensional unital real division algebras $\mathcal A$ with $\operatorname{Aut}(\mathcal A)$ containing a nontrivial reflection $\varphi$ (i.e., an automorphism of order two). If such an algebra $\mathcal A$ is a $\mathbb C$-bimodule, then we describe its multiplication table and state division conditions in terms of certain polynomials. Finally, we suggest a new method (different from the duplication process) that can be used to construct families of four-dimensional division algebras $\mathcal A$ with $\mathfrak{Der} (\mathcal A) =\{0\}$, which are generally not third power-associative or quadratic. Under some restrictions on algebra coefficients, we have listed all possible types of their automorphism groups.

UDC: 512.554.2


 English version:
Journal of Mathematical Sciences (New York), 2023, 275:4, 393–402


© Steklov Math. Inst. of RAS, 2024