RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 8, Pages 207–215 (Mi fpm37)

This article is cited in 6 papers

Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth

S. P. Mishchenkoa, O. I. Cherevatenkob

a Ulyanovsk State University
b Ul'yanovsk State Pedagogical University

Abstract: We study the behaviour of the codimension sequence of polynomial identities of Leibniz algebras over a field of characteristic 0. We prove that a variety $\mathbf V$ has polynomial growth if and only if the condition
$$ \mathbf N_2\mathbf A,\widetilde{\mathbf V_1}\not\subset\mathbf V\subset\widetilde{\mathbf N_c\mathbf A} $$
holds, where $\mathbf N_2\mathbf A$ is the variety of Lie algebras defined by the identity
$$ (x_1x_2)(x_3x_4)(x_5x_6)\equiv 0, $$
$\widetilde{\mathbf V_1}$ is the variety of Leibniz algebras defined by the identity
$$ x_1(x_2x_3)(x_4x_5)\equiv 0, $$
and $\widetilde{\mathbf N_c\mathbf A}$ is the variety of Leibniz algebras defined by the identity
$$ (x_1x_2)\cdots(x_{2c+1}x_{2c+2})\equiv 0. $$


UDC: 512.572


 English version:
Journal of Mathematical Sciences (New York), 2008, 152:2, 282–287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024