RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1999 Volume 5, Issue 3, Pages 943–945 (Mi fpm409)

This article is cited in 3 papers

Short communications

Symplectic groups over Laurent polynomial rings and patching diagrams

V. I. Kopeiko

Kalmyckia State University

Abstract: In this note we prove the following result. Let $A$ be a P.I.D. such that $\operatorname{K}_1\operatorname{Sp}(A)=0$. Then the groups $\operatorname{Sp}_{2r}(A[X_1^{\pm1},\ldots,X_n^{\pm1},Y_1,\ldots,Y_m])$ are generated by elementary symplectic matrices for all integers $r\geq2$.

UDC: 512.666

Received: 01.05.1996



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024