RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2000 Volume 6, Issue 1, Pages 81–92 (Mi fpm452)

This article is cited in 1 paper

On unconditional and absolute convergence of wavelet type series

S. V. Golovan'

M. V. Lomonosov Moscow State University

Abstract: In this paper we consider wavelet type systems, i. e. systems of type
$$ \{\psi_{mn}(x)=2^{m/2}\psi(2^mx-n)\}, $$
where $\psi\in L^2(\mathbb R)$ such that $\operatorname{supp}\psi\Subset\mathbb R$. Let $E$ be a set of real numbers. We prove the equivalence of absolute and unconditional convergence almost everywhere on $E$ of the series
$$ \sum_{\substack{m\geq 0\\ n\in\mathbb Z}}a_{mn}\psi_{mn}(x) . $$


UDC: 517.521.3

Received: 01.01.1997



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024