Abstract:
Using the asymptotic method of quasi-normal forms the dynamic characteristics of the following boundary value problem are analyzed:
$$
\begin{array}{c}
u_{tt}-u_{xx}-\varepsilon a^2 u_{xxtt}
=\varepsilon\alpha u_{xxt}+\varepsilon u_{t}-u^2u_{t},
\\[2mm]
\left.u\right|_{x=0}=\left.u\right|_{x=1}=0,\quad
\alpha=\mathrm{const}>0,\quad
0<\varepsilon\ll1.
\end{array}
$$