RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2000 Volume 6, Issue 4, Pages 955–976 (Mi fpm519)

Analogues of the rational series in the locally convex space

E. N. Alekseeva

Orel State University

Abstract: The aim of the paper is to study the conditions of expansion of vectors of a complete locally convex space $H$ in a series of the form $\sum\limits_{j=1}^{\infty}d_{j}f(\lambda_{j})$, where $f(\lambda)$ is an analytical in the circle $|\lambda|<1$ vector-valued function, the values of which are vectors from $H$, $|\lambda_{j}|\nearrow 1$. The proved theorems generalize the well-known results about expansion of analytical functions in a rational series of the form $\sum\limits_{j=1}^{\infty}\frac{d_{j}}{1-\lambda_{j}z}$ and also the results of the author about expansion of analytical functions in a series of the form $\sum\limits_{j=1}^{\infty}d_{j}f(\lambda_{j}z)$, where $f(z)$ is a function analytical in the unit circle.

UDC: 517.984

Received: 01.11.1997



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024