RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2001 Volume 7, Issue 3, Pages 925–930 (Mi fpm581)

This article is cited in 2 papers

Short communications

An approximation modulo $s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the CAR algebra

G. G. Amosov

Moscow Institute of Physics and Technology

Abstract: We investigate the possibility of approximation modulo $s_2$ of isometrical operators in Hilbert space. Further we give the criterion of innerness of quasifree automorphisms of hyperfinfite factors $\mathcal M$ of type $\mathrm{II}_1$ and type $\mathrm{III}_{\lambda }$ generated by the representations of the algebra of canonical anticommutation relations (CAR). The results are used to describe cocycle conjugacy classes of quasifree shifts on hyperfinite factors of $\mathcal M$.

UDC: 517.98

Received: 01.02.1998



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025