RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2001 Volume 7, Issue 3, Pages 651–658 (Mi fpm584)

This article is cited in 4 papers

The Nagata–Higman theorem for hemirings

I. I. Bogdanov

M. V. Lomonosov Moscow State University

Abstract: In this paper the hemirings (in general, with noncommutative addition) with the identity $x^n=0$ are studied. The main results are the following ones.
Theorem. If a $n!$-torsionfree general hemiring satisfies the identity $x^n=0$, then it is nilpotent. The estimates of the nilpotency index are equal for $n!$-torsionless rings and general hemirings.
Theorem. The estimates of the nilpotency index of $l$-generated rings and general hemirings with identity $x^n=0$ are equal.
The proof is based on the following lemma.
Lemma. If a general semiring $S$ satisfies the identity $x^n=0$, then $S^n$ is a ring.

UDC: 512.558

Received: 01.09.2000



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025