RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1995 Volume 1, Issue 2, Pages 523–527 (Mi fpm65)

This article is cited in 2 papers

Short communications

The Nagata–Higman theorem for semirings

A. Ya. Belov

House of scientific and technical work of youth

Abstract: This paper contains the proof of the Nagata–Higman theorem for semirings (with non-commutative addition in general). The main results are the following:
Theorem. Let $A$ be an $l$-generated semiring with commutative addition in which the identity $x^{m}=0$ is satisfied. Then the nilpotency index of $A$ is not greater than $2l^{m+1}m^{3}$.
Nagata–Higman theorem for general semirings. If an $l$-generated semiring satisfies the identity $x^{m}=0$ than every word in it of length greater than $m^{m}\cdot2l^{m+1}m^{3}+ m$ is zero.

Received: 01.02.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025