RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2002 Volume 8, Issue 4, Pages 1239–1243 (Mi fpm685)

This article is cited in 2 papers

Short communications

Hilbert's transformation and $A$-integral

Anter Ali Alsayad

M. V. Lomonosov Moscow State University

Abstract: We prove that if $g$ is a bounded function, $g\in L^p(\mathbb R)$, $p\ge1$, its Hilbert's transformation $\tilde g$ is also a bounded function, and $f(x)\in L(\mathbb R)$, then $\tilde fg$ is an $A$-integrable function on $\mathbb R$ and
$$ (A)\!\int\limits_{\mathbb R}\tilde fg\,dx =-(L)\!\int\limits_{\mathbb R}f\tilde g\,dx. $$


UDC: 517.51

Received: 01.06.1997



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025