Abstract:
The classical theory of Thom isomorphisms is extended to nonorientable vector bundles. The properties of orientation sheaves of bundles and of the Thom and Euler classes $\tau$ and $e$ with respect to projections, fiber maps, Cartesian products, and Whitney sums of bundles are studied. The validity of standard constructions used in the applications of the classes $\tau$ and $e$ is confirmed. It is shown that the Thom isomorphisms, together with their form, are consequences of the Poincaré duality.