RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2004 Volume 10, Issue 3, Pages 181–197 (Mi fpm777)

This article is cited in 13 papers

Problems in algebra inspired by universal algebraic geometry

B. I. Plotkin

Hebrew University of Jerusalem

Abstract: Let $\Theta$ be a variety of algebras. In every variety $\Theta$ and every algebra $H$ from $\Theta$ one can consider algebraic geometry in $\Theta$ over $H$. We also consider a special categorical invariant $K_\Theta(H)$ of this geometry. The classical algebraic geometry deals with the variety $\Theta=\mathrm{Com-}P$ of all associative and commutative algebras over the ground field of constants $P$. An algebra $H$ in this setting is an extension of the ground field $P$. Geometry in groups is related to the varieties $\mathrm{Grp}$ and $\mathrm{Grp-}G$, where $G$ is a group of constants. The case $\mathrm{Grp-}F$, where $F$ is a free group, is related to Tarski's problems devoted to logic of a free group. The described general insight on algebraic geometry in different varieties of algebras inspires some new problems in algebra and algebraic geometry. The problems of such kind determine, to a great extent, the content of universal algebraic geometry. For example, a general and natural problem is: When do algebras $H_1$ and $H_2$ have the same geometry? Or more specifically, what are the conditions on algebras from a given variety $\Theta$ that provide the coincidence of their algebraic geometries? We consider two variants of coincidence: 1) $K_\Theta(H_1)$ and $K_\Theta(H_2)$ are isomorphic; 2) these categories are equivalent. This problem is closely connected with the following general algebraic problem. Let $\Theta^0$ be the category of all algebras $W=W(X)$ free in $\Theta$, where $X$ is finite. Consider the groups of automorphisms $\operatorname{Aut}(\Theta^0)$ for different varieties $\Theta$ and also the groups of autoequivalences of $\Theta^0$. The problem is to describe these groups for different $\Theta$.

UDC: 512.7


 English version:
Journal of Mathematical Sciences (New York), 2006, 139:4, 6780–6791

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024