RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2005 Volume 11, Issue 3, Pages 189–200 (Mi fpm830)

This article is cited in 1 paper

Nil-algebras and infinite groups

L. Hammoudi

Ohio State University

Abstract: We simplify our construction of nil-algebras by proving, for any integer $d\geq2$ and over any field $\mathbb K$, that there exists a residually nilpotent nonnilpotent nil-algebra over $\mathbb K$ generated by $d$ elements. As a consequence, we obtain similar results for nonassociative algebras and groups.

UDC: 512.54


 English version:
Journal of Mathematical Sciences (New York), 2007, 144:2, 4004–4012

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024