This article is cited in
4 papers
Inversion of matrices over a pseudocomplemented lattice
E. E. Marenich,
V. G. Kumarov Murmansk State Pedagogical University
Abstract:
We compute the greatest solutions of systems of linear equations over a lattice
$(P,\leq)$. We also present some applications of the obtained results to lattice matrix theory. Let
$(P,\leq)$ be a pseudocomplemented lattice with
$\tilde0$ and
$\tilde1$ and let
$A=\|a_{ij}\|_{n\times n}$, where
$a_{ij}\in P$ for
$i,j=1,\dots,n$. Let
$A^*=\|a'_{ij}\|_{n\times n}$ and $a'_{ij}=\bigwedge\limits_{\substack{r=1\\ r\ne j}}^na_{ri}^*$ for
$i,j=1,\dots,n$, where
$a^*$ is the pseudocomplement of
$a\in P$ in
$(P,\leq)$. A matrix
$A$ has a right inverse over
$(P,\leq)$ if and only if
$A\cdot A^*=E$ over
$(P,\leq)$. If
$A$ has a right inverse over
$(P,\leq)$, then
$A^*$ is the greatest right inverse of
$A$ over
$(P,\leq)$. The matrix
$A$ has a right inverse over
$(P,\leq)$ if and only if
$A$ is a column orthogonal over
$(P,\leq)$. The matrix
$D=A\cdot A^*$ is the greatest diagonal such that
$A$ is a left divisor of
$D$ over
$(P,\leq)$. Invertible matrices over a distributive lattice
$(P,\leq)$ form the general linear group
$\mathrm{GL}_n (P,\leq)$ under multiplication. Let
$(P,\leq)$ be a finite distributive lattice and let
$k$ be the number of components of the covering graph $\Gamma(\operatorname{join}(P,\leq)-\{\tilde0\},\leq)$, where
$\operatorname{join}(P,\leq)$ is the set of join irreducible elements of
$(P,\leq)$. Then
$\mathrm{GL}_n(P,\leq)\cong S_n^k$. We give some further results concerning inversion of matrices over a pseudocomplemented lattice.
UDC:
519.1