RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2005 Volume 11, Issue 5, Pages 85–90 (Mi fpm867)

Estimates of sums of zero multiplicities for eigenfunctions of the Laplace–Beltrami operator

V. N. Karpushkin

Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: We obtain an upper estimate $N-\chi(M)$ for the sum $Q_N$ of singular zero multiplicities of the $N$th eigenfunction of the Laplace–Beltrami operator on the two-dimensional, compact, connected Riemann manifold $M$, where $\chi(M)$ is the Euler characteristic of $M$. There are given more strong estimates, but equivalent asymptotically ($N\to\infty$), for the cases of the sphere $S^2$ and the projective plane $\mathbb R^2$. Asymptotically more sharp estimate are shown for the case of a domain on the plane.

UDC: 517.586


 English version:
Journal of Mathematical Sciences (New York), 2007, 146:1, 5509–5512

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024