RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 1, Pages 247–252 (Mi fpm930)

This article is cited in 4 papers

A generalization of the Pogorelov–Stocker theorem on complete developable surfaces

I. Kh. Sabitov

M. V. Lomonosov Moscow State University

Abstract: The well-known Pogorelov theorem stating the cylindricity of any $C^1$-smooth, complete, developable surface of bounded exterior curvature in $\mathbb R^3$ was generalized by Stocker to $C^2$-smooth surfaces with a more general notion of completeness. We extend Stocker's result to $C^1$-smooth surfaces being normal developable in the Burago–Shefel' sense.

UDC: 514.752


 English version:
Journal of Mathematical Sciences (New York), 2008, 149:1, 1028–1031

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024