RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 4, Pages 3–19 (Mi fpm956)

This article is cited in 25 papers

Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity

S. N. Antontseva, S. I. Shmarevb

a University of Beira Interior
b Universidad de Oviedo

Abstract: We prove the existence and uniqueness of weak solutions of the Dirichlet problem for the nonlinear degenerate parabolic equations
$$ u_{t}=\operatorname{div}(a|u|^{\gamma(x,t)}\nabla u)+\mathbf{b}|u|^{\gamma(x,t)/2}\nabla u-c|u|^{\sigma (x,t)-2}u+d, $$
where $a$, $\mathbf{b}$, $c$, and $d$ are given functions of the arguments $x$, $t$, and $u(x,t)$, and the exponents of nonlinearity $\gamma(x,t)$ and $\sigma(x,t)$ are known measurable and bounded functions of their arguments.

UDC: 517.957+517.956.4


 English version:
Journal of Mathematical Sciences (New York), 2008, 150:5, 2289–2301

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025