RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 4, Pages 187–202 (Mi fpm966)

This article is cited in 4 papers

Certain inverse problems for parabolic equations

S. G. Pyatkovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Ugra State University

Abstract: In the paper, we study the inverse problem of finding the solution $u$ and the coefficient $q$ from the following data:
\begin{gather*} Mu=u_t-L(x,t,D_x)u+g(x,t,u,\nabla u)+q(x,t)u(x,t)=f(x,t), \\ (x,t)\in Q=G\times(0,T), \\ u|_{S}=\varphi(x,t),\quad \frac{\partial u}{\partial n}\biggr|_{S}=\psi(x,t),\quad u|_{t=0}=u_0(x),\quad S=\Gamma\times(0,T), \end{gather*}
where $G\subset\mathbb R^n$ is a bounded domain with boundary $\Gamma$ and $L$ is a second-order elliptic operator. We prove that the problem is solvable locally in time or in the case where the norms of its data are sufficiently small.

UDC: 517.95


 English version:
Journal of Mathematical Sciences (New York), 2008, 150:5, 2422–2433

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025