RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 6, Pages 115–135 (Mi fpm993)

This article is cited in 2 papers

The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a plane

P. A. Krutitskiia, A. I. Sgibnevb

a M. V. Lomonosov Moscow State University, Faculty of Physics
b M. V. Lomonosov Moscow State University

Abstract: We consider the mixed problem for Laplace's equation outside cuts in a plane. The Dirichlet boundary condition is posed on one side of each cut, and the skew derivative condition is posed on the other side. This problem generalizes the mixed Dirichlet–Neumann problem. Using the method of potentials, this problem is reduced to a uniquely solvable Fredholm integral equation of the second kind.

UDC: 517.958+517.968


 English version:
Journal of Mathematical Sciences (New York), 2008, 151:1, 2710–2725

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025