RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 6, Pages 231–239 (Mi fpm998)

This article is cited in 1 paper

Birkhoff regularity in terms of the growth of the norm for the Green function

E. A. Shiryaev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider the ordinary differential operator $L$ generated on $[0,1]$ by the differential expression
$$ l(y)=(-i)^ny^{(n)}(x)+p_2(x)y^{(n-2)}+\dots+p_{n-1}(x)y'+p_n(x)y $$
and $n$ linearly independent homogeneous boundary conditions at the endpoints. We assume that the coefficients $p_k(x)$ are Lebesgue integrable complex functions. If the boundary conditions are Birkhoff regular, then the Green function $G(\lambda)$, being the kernel of the operator $(L-\lambda)^{-1}$, admits the asymptotic estimate (for sufficiently large $|\lambda|>c_0$)
$$ |G(\lambda)|\leq M|\lambda|^{\frac{-n+1}{n}}, $$
where $M=M(c_0)$ is a certain constant. In the present paper, we prove the converse assertion: the fulfillment of this estimate on some rays implies the regularity of the operator $L$.

UDC: 517.984


 English version:
Journal of Mathematical Sciences (New York), 2008, 151:1, 2793–2799

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024