Abstract:
A three-dimensional computer simulation of dynamic processes occurring in a domain wall moving in a soft-magnetic uniaxial film with in-plane anisotropy has been performed based on the micromagnetic approach. It has been shown that the domain wall motion is accompanied by topological transformations of the magnetization distribution, or, more specifically, by “fast” processes associated with the creation and annihilation of vortices, antivortices, and singular (Bloch) points. The method used for visualizing the topological structure of magnetization distributions is based on the numerical determination of topological charges of two types by means of the integration over the contours and surfaces with variable geometry. The obtained data indicate that the choice of the initial configuration predetermines the dynamic scenario of topological transformations.
Keywords:Vortex, Singular Point, Domain Wall, Topological Charge, Topological Soliton.