Abstract:
A theoretical model has been proposed for describing the relaxation of elastic stresses in an atomically inhomogeneous pentagonal nanowire due to the formation of quantum dots in the form of precipitates of the second phase. Quantum dots have been considered as finite-height coaxial cylindrical inclusions subjected to intrinsic axial dilatation and located along the axis of the nanowire. The optimum shape and sizes of the quantum dots have been calculated for specified nanowire parameters. It has been shown that such quantum dots can form different equilibrium periodic structures in the pentagonal nanowires.