RUS  ENG
Full version
JOURNALS // Fizika Tverdogo Tela // Archive

Fizika Tverdogo Tela, 2019 Volume 61, Issue 2, Pages 346–356 (Mi ftt8928)

This article is cited in 5 papers

Phase transitions

Nonequilibrium diffusional phase transformations in alloys induced by migration of grain boundaries and dislocations

I. K. Razumova, Yu. N. Gornostyrevab, A. Y. Yermakovab

a Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: The main scenarios of nonequilibrium diffusional transformations induced by moving defects (dislocations, grain boundaries) in alloys under severe plastic deformation are considered. It has been shown that the phase state locally changes in the area of a defect where thermodynamic properties of alloy are locally changed, and the attained state is frozen after the displacement of a defect due to the difference between the rates of bulk diffusion and diffusion on a defect. For this reason, an alloy shifts from the state of its thermodynamic equilibrium under treatment, thus different nonequilibrium states, such as the disordering of alloy, the dissolution of equilibrium phase precipitates, the appearance of nonequilibrium phases, and the formation of regular structures, are possible depending on the type of the system. These effects may take place if the treatment of an alloy is performed at moderate temperatures, when diffusion is frozen in the bulk and rather active on defects. The phenomena of phase and structural instability developing under severe plastic deformation at moderate temperatures are considered within the framework of the proposed model.

Received: 25.09.2018

DOI: 10.21883/FTT.2019.02.47137.257


 English version:
Physics of the Solid State, 2019, 61:2, 214–224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024