Abstract:
Using methods of the density functional theory, the electronic band structure of a hexagonal modification of the layered GaTe semiconductor has been calculated. The structural parameters of a bulk crystal with the $\beta$-polytype symmetry have been determined taking into account van der Waals interactions and agree with experimental data for polycrystalline films within 2%. Estimates for the position of extrema of the upper valence band and the lower conduction band have been obtained with respect to the vacuum level for bulk $\beta$-GaTe and for ultrathin plates with the number of elementary layers ranging from 1 to 10, which corresponds to a thickness range of 0.5–8 nm. The calculations demonstrate that hexagonal GaTe is an indirect band gap semiconductor with a forbidden band width varying from 0.8 eV in the bulk material to 2.3 eV in the monolayer.