Abstract:
The initial stages of the growth of ferroelectric barium strontium titanate films on single-crystal silicon carbide substrates have been studied for the first time. The choice of a substrate with high thermal conductivity has been due to the possibility of applying these structures in powerful microwave devices. The temperature ranges separating the mechanism of the surface diffusion of deposited atoms from the diffusion via a gaseous phase during the growth of multicomponent films have been determined. The studies show that the mass transfer by means of surface diffusion leads to the formation of small-height nuclei that cover a large area of the substrate, whereas the mass transfer via a gaseous phase leads to the formation of a “columnar” islandtype structure with small percentage of covering the substrate and larger island heights.