Abstract:
The thermoluminescent properties of anion-defect alumina single crystals with different FWHMs of the main (dosimetric) peak at 400–500 K are studied. New experimental evidence in favor of the hole nature of traps associated with the high-temperature part of this peak are presented. The introduction of hole trap centers into analysis provided theoretical justification for the experimentally observed dependences of the thermoluminescence (TL) intensity, the temperature position of the main peak, and its FWHM on the occupancy of deep traps. The hole nature of traps of the high-temperature part of the main TL peak is confirmed by the results of examination of specific TL features of shallow trap centers, which govern TL at 350 K, and the temperature variation of the main TL peak spectrum.