Abstract:
A molecular mechanical model has been proposed for nanoribbons of graphone (graphene with single-sided hydrogenation), which takes into account deformations of valence bonds, valence and torsion angles, as well as non-bonded van der Waals and Coulomb interactions of atoms in a graphone nanoribbon. The ground states of the nanoribbons have been found using the proposed model. It has been shown that a rectangular fragment of graphone on a substrate formed by an infinite planar graphene sheet forms a flat monolayer, whereas a fragment that does not interact with the substrate takes a convex shape, the outer side of which contains the attached hydrogen atoms. The simulation of the dynamics has demonstrated that the single-sided structure of a graphone sheet is resistant to thermal vibrations (at temperatures $T<$ 900 K, hydrogen atoms do not migrate from one side of the sheet to the other). The difference between the sides leads to a rapid folding of long-length free-standing graphone nanoribbons into scrolled structures. Thermal vibrations do not prevent the formation of scrolls, and the scrolls themselves are resistant to these vibrations.