RUS  ENG
Full version
JOURNALS // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta // Archive

Izv. IMI UdGU, 2019 Volume 54, Pages 38–44 (Mi iimi380)

On a problem related to second-order Diophantine equations

A. E. Lipin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russia

Abstract: The article considers the problem set by V. N. Ushakov of finding triangles with integer lengths of sides $a$, $b$, $c$, satisfying the relations $a^2=b^2+c^2+k$ and $\dfrac{a}{c}=\dfrac{3}{2}$, where $k$ is a nonzero integer. We give a necessary and sufficient condition for the number $k$ under which such triangles exist. The proof is constructive and allows, in the case of satisfying the criterion, to indicate an infinite number of triples $(a,b,c)$ with the given property.

Keywords: systems of diophantine equations, recurrence relations, Fibonacci and Lucas numbers.

UDC: 511.176

MSC: 11B39

Received: 26.09.2019

DOI: 10.20537/2226-3594-2019-54-03



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024