RUS  ENG
Full version
JOURNALS // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta // Archive

Izv. IMI UdGU, 2020 Volume 55, Pages 42–59 (Mi iimi390)

This article is cited in 3 papers

MATHEMATICS

On the spectrum of a Landau Hamiltonian with a periodic electric potential $V\in L^p_{\mathrm {loc}}(\mathbb{R}^2)$, $p>1$

L. I. Danilov

Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences, ul. T. Baramzinoi, 34, Izhevsk, 426067, Russia

Abstract: We consider the two-dimensional Shrödinger operator $\widehat H_B+V$ with a homogeneous magnetic field $B\in {\mathbb R}$ and with an electric potential $V$ which belongs to the space $L^p_{\Lambda } ({\mathbb R}^2;{\mathbb R})$ of $\Lambda $ -periodic real-valued functions from the space $L^p_{\mathrm {loc}} ({\mathbb R}^2)$, $p>1$. The magnetic field $B$ is supposed to have the rational flux $\eta =(2\pi )^{-1}Bv(K) \in {\mathbb Q}$ where $v(K)$ denotes the area of the elementary cell $K$ of the period lattice $\Lambda \subset {\mathbb R}^2$. Given $p>1$ and the period lattice $\Lambda $, we prove that in the Banach space $(L^p_{\Lambda } ({\mathbb R}^2;\mathbb R),\| \cdot \| _{L^p(K)})$ there exists a typical set $\mathcal O$ in the sense of Baire (which contains a dense $G_{\delta}$ -set) such that the spectrum of the operator $\widehat H_B+V$ is absolutely continuous for any electric potential $V\in {\mathcal O}$ and for any homogeneous magnetic field $B$ with the rational flux $\eta \in {\mathbb Q}$.

Keywords: two-dimensional Schrödinger operator, periodic electric potential, homogeneous magnetic field, spectrum.

UDC: 517.958, 517.984.56

MSC: 35P05

Received: 01.05.2020

DOI: 10.35634/2226-3594-2020-55-04



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025