RUS  ENG
Full version
JOURNALS // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta // Archive

Izv. IMI UdGU, 2020 Volume 56, Pages 20–29 (Mi iimi399)

This article is cited in 3 papers

MATHEMATICS

Stability of regular vortex polygons in Bose–Einstein condensate

A. A. Kilin, E. M. Artemova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: We consider the problem of the stability of rotating regular vortex $N$-gons (Thomson configurations) in a Bose–Einstein condensate in a harmonic trap. The dependence of the rotation velocity $\omega$ of the Thomson configuration around the center of the trap is obtained as a function of the number of vortices $N$ and the radius of the configuration $ R $. The analysis of the stability of motion of such configurations in the linear approximation is carried out. For $N \leqslant 6$, regions of orbital stability of configurations in the parameter space are constructed. It is shown that vortex $N$-gons for $N > 6$ are unstable for any parameters of the system.

Keywords: vortex dynamics, Thomson configurations, Bose–Einstein condensate, linear stability.

UDC: 531, 534, 519-7

MSC: 70H05, 70H14, 76Yxx, 34D20, 37Jxx

Received: 01.10.2020

DOI: 10.35634/2226-3594-2020-56-02



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024