Abstract:
In a normed space of finite dimension, a discrete game problem with fixed duration is considered. The terminal set is determined by the condition that the norm of the phase vector belongs to a segment with positive ends. In this paper, a set defined by this condition is called a ring. At each moment, the vectogram of the first player's controls is a certain ring. The controls of the second player at each moment are taken from balls with given radii. The goal of the first player is to lead a phase vector to the terminal set at a fixed time. The goal of the second player is the opposite. In this paper, necessary and sufficient termination conditions are found, and optimal controls of the players are constructed.