RUS  ENG
Full version
JOURNALS // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta // Archive

Izv. IMI UdGU, 2023 Volume 61, Pages 137–155 (Mi iimi446)

This article is cited in 1 paper

MATHEMATICS

Integration of the mKdV Equation with nonstationary coefficients and additional terms in the case of moving eigenvalues

A. B. Khasanova, U.A. Hoitmetovb, Sh. Q. Sobirovb

a Samarkand State University, University boulvard, 15, Samarkand, 140104, Uzbekistan
b Urgench State University, ul. Khamida Alimdjana, 14, Urgench, 220100, Uzbekistan

Abstract: In this paper, we consider the Cauchy problem for the non-stationary modified Korteweg–de Vries equation with an additional term and a self-consistent source in the case of moving eigenvalues. Also, the evolution of the scattering data of the Dirac operator is obtained, the potential of which is the solution of the loaded modified Korteweg–de Vries equation with a self-consistent source in the class of rapidly decreasing functions. Specific examples are given to illustrate the application of the obtained results.

Keywords: Gelfand–Levitan–Marchenko integral equation, system of Dirac equations, Jost solutions, scattering data.

UDC: 517.957

MSC: 37K15

Received: 30.12.2022
Accepted: 17.04.2023

Language: English

DOI: 10.35634/2226-3594-2023-61-08



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024