RUS  ENG
Full version
JOURNALS // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta // Archive

Izv. IMI UdGU, 2024 Volume 64, Pages 48–59 (Mi iimi469)

MATHEMATICS

On a discrete Schrödinger equation for a quantum dot with a nonlocal potential

N. I. Korobeinikova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: The paper considers the discrete Schrödinger equation. This is the characteristic equation for a Schrödinger operator of a certain type. It corresponds to a mathematical model that describes nanoscale devices that regulate electron transport using, for example, the Aharonov–Bohm effect. We study the general spectral properties of the operator, find eigenvalues and resonances, and investigate the scattering problem. In particular, conditions for complete transmission (i.e., transmission with probability equal to one) are found, and the possibility of Fano resonance is indicated.

Keywords: discrete Schrödinger operator, resonance, eigenvalue, discrete Lippmann–Schwinger equation, Fano resonance

UDC: 517.958, 530.145.6

MSC: 81Q10, 81Q15

Received: 01.10.2024
Accepted: 02.11.2024

DOI: 10.35634/2226-3594-2024-64-04



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025