RUS  ENG
Full version
JOURNALS // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta // Archive

Izv. IMI UdGU, 2025 Volume 65, Pages 28–35 (Mi iimi475)

MATHEMATICS

Some results of coincidence points on $b$-metric space

S. Benaraba, W. Merchelaab, N. Khialb

a University Salah Boubnider Constantine 3, Ali Mendjeli, El Khroub, Constantine, 25016, Algeria
b Mustapha Stambouli University – Mascara, B. P. 305, Route de Mamounia, Mascara, 29000, Algeria

Abstract: In this paper, we extend some results of a coincidence point for mappings $\psi$, $\varphi$ acting from a metric space to another one — to a space with a generalized distance. In our case, mappings $\psi$, $\varphi$ are acting from $b$-metric space to a space with a generalized distance (distance satisfying only the axiom of identity, i.e., symmetry and triangle inequality are not satisfied). The mapping $\psi$ is $\alpha$-covering and $\varphi$ is $\beta$-Lipschitz. Also, we study the stability of a coincidence point for mappings $\psi$, $\varphi$. We obtain the convergence of a coincidence point for mappings $\psi_n$, $\varphi_n$ to a coincidence point for mappings $\psi$, $\varphi$ when we have some convergence $\psi_n$ to $\psi$ and $\varphi_n$ to $\varphi$ as $n\to \infty$.

Keywords: covering mapping, metric space, $b$-metric space

UDC: 515.126.4

Received: 04.02.2025
Accepted: 06.04.2025

Language: English

DOI: 10.35634/2226-3594-2025-65-02



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025