RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1991 Volume 55, Issue 2, Pages 282–302 (Mi im1010)

This article is cited in 5 papers

On homology classes determined by real points of a real algebraic variety

V. A. Krasnov


Abstract: For a nonsingular $n$-dimensional real projective algebraic variety $X$ the set $X(\mathbf R)$ of its real points is the union of connected components $X(\mathbf R)=X_1\cup\dots\cup X_m$. Those components give rise to homology classes $[X_1],\dots,[X_m]\in H_n(X(\mathbf C),\mathbf F_2)$. In this paper a bound on the number of relations between those homology classes is obtained.

UDC: 513.6+517.6

MSC: Primary 14J99, 55N99; Secondary 14G27

Received: 05.05.1988


 English version:
Mathematics of the USSR-Izvestiya, 1992, 38:2, 277–297

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025