RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1990 Volume 54, Issue 5, Pages 957–974 (Mi im1057)

This article is cited in 6 papers

On the boundary behavior of functions in spaces of Hardy type

V. G. Krotov


Abstract: Let $X$ be a topological space with a measure $\mu$. In the product $\mathscr X=X\times (0,T]$ (or $\mathscr X=X\times [0,1)$) simple axioms are used to distinguish a family $\Gamma=\{\Gamma(x)\colon x\in X\}$ of domains for approaching the boundary of $\mathscr X$. Associated with the family $\Gamma$ is the maximal function
$$ \mathscr M_\Gamma u(x)=\sup\ \{|u(y,t)|\colon (y,t)\in\Gamma(x)\}. $$
The spaces $\mathscr H^p(\mathscr X,\Gamma,\mu)$ consisting of functions $u$ continuous on $\mathscr X$ with $\mathscr M_\Gamma u\in L^p$ are introduced, along with the subspaces of them consisting of the functions having a $\Gamma$-limit a.e. The properties of the spaces $\mathscr H^p$ and the action in them of operators of smoothing type are studied. The results are applied to Hardy spaces of harmonic or holomorphic functions.

UDC: 517.51+517.56

MSC: Primary 30D40, 42B30; Secondary 30D55, 46J15

Received: 25.02.1987
Revised: 13.11.1989


 English version:
Mathematics of the USSR-Izvestiya, 1991, 37:2, 303–320

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024