RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1990 Volume 54, Issue 2, Pages 316–338 (Mi im1096)

This article is cited in 10 papers

An analog of the Riemann–Hurwitz formula for one type of $l$-extensions of algebraic number fields

L. V. Kuz'min


Abstract: For an $l$-extension $K/k$ of an algebraic number field satisfying certain appropriate conditions the author obtains a formula analogous to the Riemann–Hurwitz formula. This formula connects the Iwasawa invariants of the fields $k_\infty$ and $K\cdot k_\infty$, where $k_\infty$ is some $\mathbf Z_l$-extension of the field $k$. It is not assumed that $K$ and $k$ are fields of CM-type.

UDC: 519.4

MSC: Primary 11R23; Secondary 11R32

Received: 31.05.1988


 English version:
Mathematics of the USSR-Izvestiya, 1991, 36:2, 325–347

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024